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A B S T R A C T

A major drawback of a Brain–Computer Interface-based robotic manipulation is the complex trajectory planning
of the robot arm to be carried out by the user for reaching and grasping an object. The present paper
proposes an intelligent solution to the existing problem by incorporating a novel Convolutional Neural Network
(CNN)-based grasp detection network that enables the robot to reach and grasp the desired object (including
overlapping objects) autonomously using a RGB-D camera. This network uses a simultaneous object and grasp
detection to affiliate each estimated grasp with its corresponding object. The subject uses motor imagery brain
signals to control the pan and tilt angle of a RGB-D camera mounted on a robot link to bring the desired
object inside its Field-of-view presented through a display screen while the objects appearing on the screen
are selected using the P300 brain pattern. The robot uses inverse kinematics along with the RGB-D camera
information to autonomously reach the selected object and the object is grasped using proposed grasping
strategy. The overall BCI system outperforms other comparative systems involving manual trajectory planning
significantly. The overall accuracy, steady-state error, and settling time of the proposed system are 93.4%,
0.05%, and 15.92 s, respectively. The system also shows a significant reduction of the workload of the operating
subjects in comparison to manual trajectory planning based approaches for reaching and grasping.
. Introduction

People suffering from neuro-motor disabilities face great difficulty
n locating and grasping objects even if the desired object is present
ithin their reach. With the recent development of Brain–Computer

nterface (BCI) technology and current state-of-the-art robotic arms,
ands and perception systems, it has been proved that these individuals
ith restricted mobility can interact with their environment to perform
ctivities of daily living (ADL), including things like drinking water,
pening doors, and other basic actions. BCI provides a direct non
uscular communication between the neural activity generated by the

ubject’s brain and the outside world [1]. For electroencephalography
EEG) based non-invasive BCI, the brain signals are obtained by placing
he electrodes on the surface of subject’s scalp which are then mapped
o manipulate external devices such as humanoid robots [2,3], virtual
elicopters [4,5], wheelchairs [6,7], tele-presence mobile robots [8,
]. In the recent past, BCI has been successfully used for rehabilita-
ion training of stroke patients [10–12], motor control of prosthetic
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limbs [13–15] and performing several activities of daily living [16–
18]. However, accurate object grasping using only brain-commanded
signals is still an open challenge because of the high degrees of freedom
(DOF) and challenges arising from complex precise position control of
the robot arm.

EEG based BCI can be categorized based on characteristic brain
activity patterns. Among them Motor Imagery (Event-Related Desyn-
chronization/Synchronization (ERD/ERS)) [19,20], Steady State Visual
Evoke Potentials (SSVEP) [21,22] and P300 patterns [23] are widely
used. Motor Imagery is extensively used for control of brain-actuated
robot link control and navigation. However the main drawback of the
MI based system is the rigorous subject training required. P300-based
BCI is relatively easy to use for generating control signals without
extensive training of the user. There are also traces of work where a
hybrid modality employing two or more brain signals is used for robot
link manipulation. But most of the previous research works employing
MI and P300 are solely based on subjective control of the robot link
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here the participating subject mentally guides the robot arm to reach
nd grasp the desired object. The main drawbacks of those systems are
wo folds, first, the brain commanded robot often misses the target
bject resulting a large positive or negative positional error. Second,
t requires large amount of subject training to accurately control the
osition of robot arm to grasp the desired object. Here the subjects
eed to perform the complex trajectory planning of the robot arm
n order to align the robot gripper with desired object. It becomes
xtremely difficult for the human subject to perform such complex
lanning mentally and to control the position and orientation of the
obot gripper to perfectly grip the desired object. Added to the above
acts, such complex trajectory planning imposes a high cognitive load
n the user’s brain.

Literature shows that quite a few studies exist in the domain of EEG
ased grasping control. In 2012, Hochberg et al. [24] and Collinger
t al. [25] developed neural interface system-based control of robotic
rms to perform three-dimensional reach and grasp movements for
atients with tetraplegia. Later in the past few years ample experiment
s conducted to control the robot arm using brain signals for reaching
nd grasping task [26–28] In all the above cases, MI based BCI protocol
s used. These BCI systems required several weeks of training sessions to
earn the direct motor control with high DOF. Such a rigorous training
rocedure often causes a large discomfort to the participants. Moreover,
s these systems are not fully autonomous and the user controls the
omplete trajectory of the robot-arm, their performance is limited for
eal-time practical applications and the cognitive load of the operating
ubjects are also increased. There also exists quite a few literature
hich uses P300 navigational signal to the robot. Spataro et al. [29]
sed P300 based EEG command to control a humanoid robot with the
im of reaching and grasping a glass of water; however the desired
bject cannot be directly selected and the subject needs to mentally
uide (using P300 based GUI) the manipulator to reach the object. Such
rawback is also seen in few other works as well [30–32] As discussed,
uch strategy imposes a high cognitive load in the subjects’ brain.
ecently, Rakshit et al. [33] proposed a SSVEP based random order
obot link selection and P300 based link movement seizing strategy to
educe the positional error. They found a drastic reduction in positional
rror compared to the other state of the art literature [34], but here
gain, the entire robot arm trajectory is planned by the subject.

BCI based shared control strategy has also been studied in the past.
ang et al. [35] used a shared control strategy to grasp an object
sing robot hand but the method suffers from the fact that the objects
sed for the experiment were identical in nature (red cap bottles),
hich makes the method challenging for diverse objects present in the
nvironment. Xu et al. [36] proposed a novel shared control strategy
here subjects mentally guided a robot end-effector in a horizontal
lane and once the end-effector comes within close vicinity of the
arget object, the switch over to automatic control using vision-based
ovement-planning is instigated. Although they achieved the highest

ccuracy around 97% but the following points still need to be addressed
here. First, the user can move the end-effector in only horizontal
lane, no control commands are given to move it in vertical direction.
econd, the scheme does not allow the user to select the target object
riory, he/she still has to mentally plan the trajectory of the end-
ffector and use motor imagery to reach the target object. In their
ontinuation work, Xu et al. [37]extended their strategy for multiple
bjects and provided adaptive assistance to the participating subject.
ssistance was provided by implementing autonomous trajectory cor-
ection and autonomous grasping during reaching and grasping of the
arget object respectively. The scheme still requires human intervention
n the path planning of the end-effector. Grasping performance was
valuated using three identical objects scattered in workspace, hence
ts performance for various objects in various scene (overlapping and
on-overlapping) is still to be explored. In [38] Liu et al. proposed a
2

ovel strategy of controlling a dual arm robot using motor imagery
and a kinect sensor. The subject used their left and right MI to com-
mand a dual arm robot to lift and drop a given object respectively.
A PDNN based neuro-dynamics optimization was used for solving the
motion redundancy of the robotic arm. In [39] Tang et al. proposed
an BCI based robot manipulation approach to quickly grasp a object
using motor imagery and camera based object detection technology. A
camera is used here to capture the live feed of the robot environment
which is visible to the user through a computer monitor. The subject
observes the computer screen and uses left/right arm motor imagery
to align the robot arm in such a way that the target object should
come in the target area(center of the camera view). The YOLO object
detection algorithm is used to get the information about the object
inside the target area and the grasp command is executed thereafter.
We recognize first that aligning the target object with target using
mental commands is bit challenging for the patients and second the
performance of the system is still unknown for objects located spatially
very close to each other (for the condition when more than one object
come inside the target area). Recently Zeng et al. [40]proposed a novel
shared controller which dynamically blends the user motion planning
and autonomous motion planning to achieve a smooth and collision
free robot trajectory. The user continuously uses his/her gaze direction
to move the end-effector in a desired direction over a horizontal
plane and simultaneously performs motor imagination to modulate the
speed of it. The subject gets assistance for most difficult part of the
task. The strategy yields a maximum of 100% success rate in this
context. However the paper focuses mostly on the reaching task and its
performance(reaching+grasping) in presence of multiple overlapping
objects is yet to be explored. The scheme also involves user intervention
throughout the task (focusing gaze and performing MI simultaneously),
which may increase the cognitive load of the novel participating sub-
jects. Duan et al. [2] proposed an approach to manipulate wheeled
robot using mental commands and computer vision. A camera mounted
on the chest of the mobile robot extracts the information about the
robot environment. The computer screen displaying camera-view about
robot’s trajectory of motion includes provisions for generating naviga-
tional commands for the robot using SSVEP, whereas MI commands
are issued to accomplish the manipulation task such as grasping the
object. The grasping phase was validated using a object which carries
a color mark on its body which helps the vision system to distinguish
the object from the background based on the color feature. Hence
the proposed system performance is yet to be explored in real life
scenario, where multiple objects with different colors are present and
it is also difficult to mark each of them with color marker. Wang
et al. [41] in a recent work used camera based real time feedback
to navigate a tele-presence robot and reach the desired object using
SSVEP. The scheme employs a camera mounted on top of a robot arm
to explore the objects within the field of view, which are transferred
to a computer monitor for selecting the target object using SSVEP.
Here for each object, a bounding box is developed. These bounding
boxes flicker at different frequencies to represent the identity of the
individual objects. A subject intending of selecting a specific object
focuses on the item and the flickering frequency is picked up by the
subject through SSVEP. Once the object is selected, the navigation of
the robot arm is automated by camera-based position control system.
However if the objects are located spatially very close to each other, it
might fall inside the same flickering bounding box making it difficult
to grasp any one of them. Apart from that, prolonged attention over the
SSVEP stimuli also causes mental and eye fatigue to the user. Similarly,
Zhang et al. in [27] used a MI based shared control strategy to control
the robot grasping and in their another paper [42] they used SSVEP
based object selection along with the Kinect based machine vision,
the shared control strategy is used for the same purpose. Recently,
Di Lillo P et al. [43] used a similar P300 and Kinect based grasping
strategy to control a manipulator in grasping an object. Li et al. de-
veloped a BCI based shared control strategy to navigate a humanoid

robot by combining central vision tracking strategy and two different
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rain signals N200 and P300 [44]. Batzianouliset al. [45] proposed
n interesting approach for shared control by utilizing ErrP signal and
nverse reinforcement learning (IRL) paradigm. Here the subject has
ts own choice of trajectory planning of a robot, for instance obstacle
voidance and trajectory planning towards fixed target. Each time the
obot reaches an obstacle before reaching the destination, the subject
eleases an ErrP signal. The decoded ErrP signal is used to move away
he robot from the obstacle without violating the planned trajectory
f the robot. An IRL algorithm is employed to change the trajectory
ollowing user’s preferred trajectory of motion.

In all the literature stated above, the authors have relied on existing
bject recognition strategy which is not capable of detecting multiple
verlapping objects present in the field of view of camera. In real life
cenario such multiple overlapping objects can frequently be found in
omestic workspace of the user and grasping of those objects using only
anual cognitive effort is immensely difficult for a human user.

In this paper, we aim to provide an intelligent solution to this
roblem of brain-actuated object grasping with the help of a camera
ounted on a robot arm to localize the object on the computer monitor

nd autonomously control the motion of the arm to accurately grasp
he object. The paper employs a 6-DOF robot arm and a Microsoft
inect which can be used as a depth sensing device in association
ith an RGB camera. Surrounding environment is visible to the subject

n the computer screen through the real time feed of the kinect. The
inect is mounted on the robot arm so that it can move in accordance
ith the arm. The subject uses feet motor imagery to choose between
an and tilt motion of the camera and hand motor imagery to change
he pan and tilt angle of the camera(by moving the 1st/5th joint of
he robot arm) until the desired object comes into the field of view
f kinect and appears in the screen. A standard pre-trained 1-D CNN
lassifier is used to decode the hand and feet motor imagery signal. A
eep learning based masking algorithm is used to estimate the object
asks in the environment and to compute the centroid of all the objects

ppearing in the screen. To choose the desired object, the centroid
f the objects appearing in the screen are flashed randomly. Once
he centroid of target object is flashed, the subject releases a P300
ignal, indicating his/her choice about the desired object. After the
esired object is known to the system, the robot arm automatically
oves closer to the object and we employ a novel Overlapping Object
rasping Network(OOGNet) to estimate proper grasping rectangle and

inally, grip the desired object by a parallel-plate gripper mounted at
he end of the last link of the arm.

Our main contributions are summarized as follows

• We present a novel brain-commanded object grasping scheme
to localize, select and grasp the desired object in a multi-object
scene. Our proposed strategy of shared cognitive control allows
subjects with neuro-motor disabilities to grasp objects in their sur-
roundings accurately and reliably with minimal cognitive effort.

• We propose a CNN based novel robotic grasp detection net-
work named Overlapping Object Grasp Net(OOGNet), which is
capable of grasping the desired object even if the object is par-
tially overlapped by other objects. The proposed grasping model
outperforms the baseline algorithms by a large margin.

• Here, the subject is relieved from planning a complex trajectory
for the robot link to align it with the desired object as the entire
reaching and grasping phase of the robot is made autonomous in
the present paper. Hence, the proposed scheme requires very little
subject training compared to existing state-of-the-art algorithms
and reduces the overall workload of the subject.

• The proposed strategy significantly improves the success rate
while minimizing the settling time and positional-steady error
of the system. Autonomous navigation of the robot towards the
desired object and the proposed OOGNet-based grasping strategy
yielded superior performance.
3

In addition to this, the paper provides a comparative analysis of
workload imposed on the performing subject while implementing dif-
ferent BCI schemes. Due to the limited cognitive processing ability of
the human brain, workload analysis becomes a necessary method to
evaluate the advantages of any BCI scheme over the others [46,47].
Such comparison also provides a tool of assessing the match between
mental cost and system performance [48]. Here we adopt an NASA-
TLX based workload analysis technique to compare our proposed BCI
scheme with the two other state-of -the art BCI schemes that use manual
trajectory planning [49]. NASA-TLX based workload assessment has
greatly been adopted in the field of BCI since years and also proves
to be an effective way of workload assessment [50,51].

2. System overview

Our setup consists of a 6-DOF robot arm (Model: ABB IRB 120), with
a payload capability of 3 kg and a maximum reach of 3 ft, mounted
beside a human subject. The links of this manipulator are connected by
rotary joints allowing only rotational movements. A Microsoft kinect
sensor(RGB camera with depth sensing device) is placed on the 5th
xis of the robot arm, in such a way that one can change the camera’s
an and tilt by rotating the 1st and 5th joints of the manipulator
espectively. The kinect provides live RGB feedback of the surrounding
nvironment to the subjects via an LCD monitor placed next to them.
ultiple objects of different classes are arranged in a variety of layouts,

n the vicinity of the robot arm with some objects overlapping with
thers. We aim to solve the task of locating, identifying and grasping
he desired object (within the reach of the robot arm) with the minimal
uman intervention. A complete overview of the system is presented
n Fig. 1. For the sake of simplification, we have taken the following
iberties in our set-up:

• Although some objects may overlap with each other, each object
is clearly visible from the initial position by changing the camera’s
Field of View (FOV).

• Different objects belonging to the same class are indistinguishable
in nature.

• Grasping an object does not require re-arrangement of other
overlying objects.

e have divided the problem into several sub-tasks.

. Locating the object: Although the user can see the objects physically
in the environment, all of them are not visible on the monitor as
the Field-of-view(FOV) of the kinect is limited. So there may arise a
need to move the kinect to bring the desired object into its FOV. We
have thus developed an algorithm which allows the subject to use MI
brain signals to change the kinect’s pan and tilt based on the position
of the desired object. The right and left arm motor imaginations are
mapped to the clockwise and anti-clockwise movement respectively
of the selected joint (1st/5th) , while feet imagery is used to toggle
the selection between 1st and 5th joint. Hence a subject first uses
feet imagery to select the desired joint followed by the left and right
arm imagery to rotate the joint in desired direction. Present selection
of the joint is displayed in the screen for convenience of control.
Motor imageries are decoded by detecting each unique ERD/ERS MI
pattern [19,20] using a CNN classifier.
Once the object fully enters the kinect’s FOV, the user stops the Mo-
tor imagination. If no MI pattern is detected in two consecutive time
windows, the algorithm terminates, indicating to the system that the
object has been successfully located. This stipulation reduces system
sensitivity to both classification and user errors. The algorithm of the
process is given in Algorithm 1.

. Choosing the object: Depending on the layout, there may be multiple
objects visible on the screen together with the desired one. In order
to tell the system which object to grasp, we need to identify all

the objects and select the desired one out of them. Our algorithm
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Fig. 1. Complete overview of the proposed scheme.
uses a state-of-the-art network Mask-RCNN [52] to detect objects in
the image and calculates the object-centroids from their segmenta-
tion masks. The centroids are then flashed in a random sequence
following the oddball paradigm [23]. When the desired centroid
flashes, the subject gazing at that object elicits a P300 response
which is detected by a CNN classifier to identify the target object
for the system. The target object’s class as predicted by Mask-RCNN
is recorded for automatic identification in a later step. If no P300
signal is detected, the system returns to the starting state. Algorithm
2 explains the above procedure.

lgorithm 1: Algorithm for Object Localization
1: COUNT ← 1;
2: Default Joint ← 1st joint (Pan);
3: while COUNT ≤ 2 do
4: Provide Cue to Subject to Start MI;
5: while Time within TIME WINDOW do
6: Read EEG data;
7: Provide Cue to Subject to Stop MI;
8: Classify EEG for MI Tasks;
9: if MI not detected then
0: COUNT ← COUNT+1;
1: else
2: COUNT← 1;
3: switch MI pattern do
4: Feet: Toggle between Pan and Tilt;
5: Left hand: Tilt Up/Pan Left;
6: Right hand: Tilt Down/Pan Right;

3. Grasping the object: The system can now identify the desired object.
But the end effector/gripper is still far away from its target to grasp
it. We solve the automatic grasping problem in two steps:

(a) Positioning: For any position (within the reach of the arm) of
4

the desired object, the gripper first automatically moves closer
Algorithm 2: Algorithm for Object Selection
1: Perform Object Detection and Centroid Calculation;
2: Generate Random Sequence 𝑆 of Detected Objects;
3: for Objects in S do
4: Blink Centroids and Read EEG Data;
5: if P300 detected then
6: Choose Current Object;
7: Exit Loop;

to the object. Once the desired object is selected, the system
calculates its real world 3D position from the 2D co-ordinates
of the centroid and the depth map produced by the kinect. We
apply inverse kinematics to move the gripper to a new position
located a small fixed distance above the desired object, with the
kinect tilted downwards to provide a new point of view (POV)
from the top. This allows the next step to be independent of
object position relative to the initial position of the gripper.

(b) Estimating Gripper Configuration: The positioning step allows
us to formulate the final task of grasping as the problem of
calculating the gripper configuration from the object image.
Jiang et al. [53] and Lenz et al. [54] have shown that a seven
dimensional grasp orientation for a parallel plate gripper can be
represented by a grasp rectangle parameterized by its position,
width, height and orientation. So, the problem is reformulated
as the task of predicting a grasp rectangle from the object’s
RGB-D image. In our case the top view may show multiple
objects on the screen along with the desired one with possible
overlapping layouts. We need to re-select the target object
from the new POV as the previously calculated 3D position is
not reliable in terms of identifying the object across different
points of view of the camera, especially in case of close and
overlapping object arrangements. Further, due to the proximity
between objects, the problem cannot be reduced to a single
object or a simple multi-object non-overlapping grasp detection
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ig. 2. The common EEG classification network architecture. Two separate instances of this network are used to classify MI and P300 signals with different network dimensions.
task like [53–60], as there arises a need for affiliation between
object and grasp prediction.
Hence,our proposed network OOGNet generates a grasp rect-
angle, a bounding box and a class prediction for each object
in the multi-object scene, thus ensuring a reliably high accu-
racy even in overlapping scenarios. Since objects of the same
class are indistinguishable in our setup, the target object is
re-identified automatically, by matching the object-classes pre-
dicted by OOGNet with the previously recorded class of the
object chosen in selection stage. Once the target object is identi-
fied, the corresponding grasp rectangle is converted to a gripper
configuration to grasp the desired object.

. Method

.1. EEG data analysis

The raw EEG data is usually noisy and contains a lot of irrelevant
nformation. Hence, appropriate task-specific filtering techniques are
pplied to the EEG signal before classification.

.1.1. Motor imagery
The EEG signal is band-pass filtered at 8–24 Hz to isolate the

RD/ERS phenomenon associated with MI brain patterns. Because of
he effectiveness of Common Spatial Patterns (CSP) [61] in discrimi-
ating Motor Imagery tasks, we use CSP filters in a multiclass one vs
est scheme to project the EEG data along directions that maximize
he differences between MI classes. The processed EEG signal (𝑌 ) is
xpressed as,

= 𝑊𝑋 (1)

here, 𝑋 is a Channels (𝐶) × Time (𝑇 ) matrix of the band-pass filtered
EG data and 𝑊 is the 𝐿 × 𝑇 CSP projection matrix, with L spatial
ilters.

.1.2. P300 ERP
P300 brain signal is characterized by a positive going peak around

00 ms after the onset of the target stimulus. A Chebyshev type I
andpass filter is used to filter the raw EEG signal between 1–10 Hz,
o reduce the background noise. Next, the information relevant to the
300 ERP is isolated from the EEG data using Principal Component
nalysis (PCA) [62]. PCA maps the signal to a lower dimensional space
y extracting the 𝐾 Eigenvectors from the EEG data that contain the
5

most information for P300 responses. The lower dimensional signal 𝑆
is expressed as,

𝑆 = 𝑃𝑋 (2)

where, 𝑋 is a Channels (𝐶) × Time (𝑇 ) matrix of the band-pass filtered
EEG data and 𝑃 contains the K eigenvectors as rows.

3.1.3. Feature extraction and classification
Convolutional Neural Networks (CNNs) have become extremely

popular for EEG classification tasks due to their much higher accuracy
compared to traditional linear classifiers. The processed 2D EEG data
matrix is fed into 3 Convolutional and maxpooling layers to learn high
level inferences from the data and a 1D feature vector is generated
from the feature map by Global Average pooling and Flatten operations.
The resulting vector is classified by a series of fully connected (FC)
and dropout layers. The pooling and dropout operations prevent over-
fitting. Two different instances of CNN having same architectures and
layers (as stated above) is used to classify Motor Imagery and P300
brain patterns respectively. The common CNN architecture used for
the classification purpose is shown in Fig. 2. Minor adjustment is done
where the final FC layer contains 3 neurons for MI classification and
2 neurons for P300 detection. For Motor Imagery, no MI pattern is
detected if the probability of a particular EEG input does not exceed
0.5 for any of the classes.

3.2. Object detection and centroid calculation

In order to select our desired object, we first need to identify all
the objects present in an image. Such object identification is carried
out by a state-of-the-art object detection network, called Mask R-
CNN [52] that can detect objects in a variety of closely positioned and
overlapping layouts. For each input RGB image, the network predicts
the class, bounding box and segmentation mask for every object visible
in the image. We calculate the centroid (𝑋𝑐 , 𝑌𝑐 ) of each object as,

𝑋𝑐 =
∑

𝑖
(𝑋𝑖∕𝑛) 𝑌𝑐 =

∑

𝑖
(𝑌𝑖∕𝑛) (3)

where (𝑋𝑖, 𝑌𝑖) is the position of the 𝑖th pixel in its segmentation mask
which contains n pixels in total.

3.3. Gripper alignment

The automatic positioning step allows us to reduce the cognitive
load on the subject by making the system perform the precise position
control task of reaching and grasping the desired object autonomously.
The Kinect placed on the fifth axis of the robot arm, is equipped
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Fig. 3. Relative position of the object from kinect frame and robot base frame.

ith an RGB camera and a depth sensor, which together provide the
and Y co-ordinates of the target object’s centroid (obtained in the

bject detection and centroid calculation step) and its distance from the
ensor. The centroid co-ordinates (𝑥′, 𝑦′, 𝑧′) measured from the Kinect
rame are then transformed with reference to the base of the robot arm
s shown in Fig. 3. The new co-ordinates of the centroid (𝑥, 𝑦, 𝑧) with
espect to the base frame can be obtained from Eq. (4).
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⎟
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⎠

(4)

here, c = (𝑐𝑥, 𝑐𝑦, 𝑐𝑧) is the position vector from origin of the base frame
o the kinect frame and 𝑅 = [𝑟𝑖𝑗 ] is the rotation matrix, determined
rom the configuration (position and orientation) of the fifth link with
eference to the base frame. Once the position of the centroid is known
n terms of the base frame, the robot arm reaches the object in two
tages.

In the first stage, the arm approaches the destination location
𝑥, 𝑦, 𝑧 − 𝛿𝑧), where 𝛿𝑧 is a fixed offset distance above the centroid
osition along 𝑍-axis. The robot arm employs an inverse kinematic
odel, which utilizes D-H parameters of the robot arm to find the

equired joint movements for reaching the destination. Since axes of
he last three joints intersect at a point in the IRB 120 robot, only
he first three joints contribute towards determining the position. For
he destination position and the initial position of the end effector,
𝑥𝑑 , 𝑦𝑑 , 𝑧𝑑 )𝑇 and (𝑥0, 𝑦0, 𝑧0)𝑇 respectively, the required joint movements
f the first three joints can be obtained from the following expression.

⎛

⎜

⎜

⎝

𝑥𝑑
𝑦𝑑
𝑧𝑑

⎞

⎟

⎟

⎠

= 0𝑄𝑖

⎛

⎜

⎜

⎝

𝑥0
𝑦0
𝑧0

⎞

⎟

⎟

⎠

(5)

here 0𝑄𝑖 = 0𝑇1.1𝑇2...𝑖−1𝑇𝑖 and 𝑖 = 1, 2, 3. Here 𝑖−1𝑇𝑖 is the trans-
ormation matrix for link i. Thus for a given destination co-ordinate,
equired joint movement is obtained by knowing the 𝑖−1𝑇𝑖 from below
xpression;

𝑥𝑑
𝑦𝑑
𝑧𝑑

⎞

⎟

⎟

⎠

=
(0𝑇1.

1𝑇2...
𝑖−2𝑇𝑖−1

)

.𝑖−1𝑇𝑖.
⎛

⎜

⎜

⎝

𝑥0
𝑦0
𝑧0

⎞

⎟

⎟

⎠

(6)

Once the destination is reached, the 5th link is tilted downwards to
rient the kinect in a fixed angular offset with the vertical, to obtain
top view of the desired object to calculate the gripper configuration
6

sing our grasp detection network.
Fig. 4. 5-D rectangular representation of a gripper configuration. Here, (x,y) denotes
the center of the grasp rectangle, w and h represent the width of the gripper opening
and height of the gripper plates respectively and 𝜃 is the orientation of the grasp
rectangle with respect to the horizontal direction.

After the grasp rectangle is predicted and the desired object is re-
identified by its class, the second stage of approach is initiated. The
co-ordinates (𝑥𝑐 , 𝑦𝑐 , 𝑧𝑐 ) of the center of the grasp rectangle, calculated
with respect to the base frame, is chosen as the grasping point. The
gripper opening is fixed according to the rectangle width. Now, the
orientation of the grasp rectangle determines the rotation of the gripper
about the normal to the image plane (kinect axis). An illustrative
picture of grasp rectangle is shown in Fig. 4. Now, the robot uses its
inverse kinematics to achieve the particular orientation. Last three joint
variables 𝜃4, 𝜃5, 𝜃6 is obtained by solving the rotation matrix 3𝑅6 in a
similar manner described in Eq. (6), where 3𝑅6 =3 𝑅4

4𝑅5
5𝑅6. With this

configuration, the gripper approaches the object along the normal and
grasps the object as described in [53,54].

3.4. Grasp detection

In our use-case, we need to predict grasps for multi-object overlap-
ping scenes. This is significantly more difficult than non-overlapping
or single object cases, due to partial occlusion by overlapping objects
and the need for affiliation between object and predicted grasp. The
grasping success rates of previous works [63–65] in this domain are
too low for use in reliable human assistant systems. The absence of a
repository for the cited implementations together with the availability
of depth information at our disposal, motivated us to design a novel
grasp prediction network, that would ensure a high physical grasping
accuracy for our use-case. While the previous approaches use only
RGB information, we use the RGB-D images from the kinect and a
deeper feature extractor to improve accuracy. In order to maintain a
fast enough execution speed for user-convenience, we predict only one
grasp rectangle for each region of interest (ROI) instead of multiple
rectangles unlike the previous methods. Our proposed Overlapping Ob-
ject Grasping Network (OOGNet) generates a grasp rectangle, bounding
box, and object class for each object in the image thus associating each
predicted grasp with its object. Architecture of the OOGNet is shown in
Fig. 5. Similar to [54], we represent a gripper configuration by a grasp
rectangle (𝐺) with 5 parameters as,

𝐺 = {𝑥, 𝑦,𝑤, ℎ, 𝜃} (7)

where (𝑥, 𝑦) denotes the center of grasp rectangle, ℎ denotes the height
of parallel plates, 𝑤 denotes the maximum distance between parallel
plates and 𝜃 denotes the orientation of grasp rectangle with respect to
the horizontal axis of the image.

4. Grasp detection network

Our proposed network takes an RGB-D image as input and generates
multiple ROI proposals for objects present in the image. Each ROI is
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ig. 5. Architecture of our proposed Overlapping Object Grasping Network (OOGNet). The network takes an RGB-D image of multiple overlapping objects as input and predicts
he class, bounding box and a 5-D grasp rectangle for each object in the image.
hen fed into three parallel branches that perform object classification,
ounding box regression and grasp prediction. The object classifier and
ounding box regressor branches are similar to that of Fast R-CNN [66]
n structure. The grasp predictor branch regresses to the 5 parameters of
grasp rectangle for each object class. The following sections detail the
rchitecture of our network in two stages that describe the generation
f object ROIs from input image and the prediction of grasp rectangles
rom each ROI.

.1. Object proposals

The first stage of the network generates object ROI proposals from
he input RGB-D image. The single channel input depth image is
onverted to a 3-channel image by the grayscale to RGB conversion
ethod. The 3-channel depth map and the RGB image are each fed

nto identical and parallel feature extractors. We use ResNet-101 [67]
s the backbone of our feature extractor network. The skip connections
n the Residual block allow us to use deeper networks that learn high
evel features without degradation of accuracy. The feature extractor
n this stage contains the first 23 layers of ResNet-101. Feature maps
f size 28 × 28 × 512 extracted from the depth and RGB inputs, are
oncatenated to form a merged feature map of size 28 × 28 × 1024.

Region Proposal Network (RPN) similar to that used by Faster R-
NN [68] is used to generate 9 (3 scales and 3 aspect ratios) Object
OI proposals for each location in the combined feature map. Each
OI is characterized by an objectness score (2 probabilities) and 4
arameters (𝑥′, 𝑦′, 𝑤′, ℎ′) denoting the bounding box location, where
𝑥′, 𝑦′) specifies the top-left corner of the box and 𝑤′ and ℎ′ denote
idth and height respectively. The RPN is trained in a similar fashion

o [68] with the same loss function.

.2. Grasp prediction branch

Each variable sized ROI generated from the RPN is fed into an ROI
ooling layer together with the merged features to produce a smaller
eature map of fixed spatial size (14 × 14). Three parallel branches
hare the pooled ROI feature map as input. The grasp branch contains a
esNet feature extractor that learns grasp specific inferences from the
bject ROIs. Here the feature extractor contains the last 51 layers of
esNet-101. The grasp feature maps of size (7 × 7 × 2048) from the last
onvolutional layer of ResNet-101 are pooled by an average pooling
ayer and fed into three fully connected layers with ReLU activation.
ach fully connected (FC) layer except the final one is followed by
dropout layer to reduce overfitting. The final FC layer outputs 5 ×
grasp parameters, for the k object classes. Thus the grasp branch

redicts a grasp rectangle for each class of object from the input object
OI.
7

4.3. Loss function

OOGnet generates three outputs, one from each branch. For each
ROI, the classification branch predicts the softmax probabilities 𝑝 =
(𝑝𝑖|∀𝑖 ∈ [0, 𝑘]) of the object belonging to the 𝑘+1 classes; 𝑘 object
types and one background class denoting no object is present in the
ROI. Here, 𝑝𝑖 denote the softmax probability of the object belonging to
class 𝑖. The bounding box and grasp branches regress to the bounding
box parameters 𝑡𝑖 = (𝑥′𝑖 , 𝑦

′
𝑖 , 𝑤

′
𝑖 , ℎ

′
𝑖) and the grasp parameters 𝐺𝑖 =

(𝑥𝑖, 𝑦𝑖, 𝑤𝑖, ℎ𝑖, 𝜃𝑖) respectively for each of the 𝑘 object classes, where 𝑖
indexes the 𝑖th class.

The labels for each ROI include a ground truth class 𝑢, a ground
truth bounding box regression target 𝑣 and a ground truth grasp rectan-
gle regression target 𝑔. Extending the loss in [66] we define a multitask
loss 𝐿𝑡𝑜𝑡𝑎𝑙 on each ROI to jointly train for classification, bounding box
regression and grasp prediction.

𝐿𝑡𝑜𝑡𝑎𝑙(𝑝, 𝑢, 𝑣, 𝑡𝑖, 𝑔, 𝐺𝑖) = 𝐿𝑐𝑙𝑠(𝑝, 𝑢) + 𝜆[𝑢 ≥ 1]𝐿𝑏𝑜𝑥(𝑡𝑢, 𝑣)

+ 𝜆′[𝑢 ≥ 1]𝐿𝑔𝑟𝑎𝑠𝑝(𝐺𝑢, 𝑔) (8)

Here, 𝐿𝑐𝑙𝑠(𝑝, 𝑢) = − log 𝑝𝑢 is the classification loss. 𝐿𝑏𝑜𝑥 is the bounding
box loss defined over the predicted box parameters 𝑡𝑢 = (𝑥′𝑢, 𝑦

′
𝑢, ℎ

′
𝑢, 𝑤

′
𝑢)

for the ground truth class 𝑢 and the ground truth box parameter
tuple 𝑣. The grasp loss 𝐿𝑔𝑟𝑎𝑠𝑝 is added to the 𝐿𝑐𝑙𝑠 and 𝐿𝑏𝑜𝑥 losses
defined in Fast R-CNN [66] to simultaneously train for grasp pre-
dictions. 𝐿𝑔𝑟𝑎𝑠𝑝 is defined over the ground truth grasp rectangle tu-
ple 𝑔 = (𝑔𝑥, 𝑔𝑢, 𝑔𝑤, 𝑔ℎ, 𝑔𝜃) and the predicted grasp rectangle 𝐺𝑢 =
(𝑥𝑢, 𝑦𝑢, 𝑤𝑢, ℎ𝑢, 𝜃𝑢) for the groundtruth class u. Both 𝐿𝑏𝑜𝑥 and 𝐿𝑔𝑟𝑎𝑠𝑝 are
smooth 𝐿1 losses. For 𝐿𝑔𝑟𝑎𝑠𝑝 the Smooth 𝐿1 loss is expressed as,

𝐿𝑔𝑟𝑎𝑠𝑝(𝐺𝑢, 𝑔) =
∑

𝑗∈𝑥,𝑦,𝑤,ℎ,𝜃
(𝑠𝑚𝑜𝑜𝑡ℎ𝐿1

(𝐺𝑗
𝑢 − 𝑔𝑗 )) (9)

where

𝑠𝑚𝑜𝑜𝑡ℎ𝐿1
(𝑥) =

{

0.5𝑥2, if |𝑥| ≤ 1
|𝑥| − 0.5, otherwise,

(10)

Smooth 𝐿1 loss is used because of its robustness to outliers as pointed
out by [66]. The 𝐿𝑏𝑜𝑥 loss is defined similarly to 𝐿𝑔𝑟𝑎𝑠𝑝. The Iverson
bracket indicator function [𝑢 ≥ 1] is defined as,

[𝑢 ≥ 1] =

{

1, if 𝑢 ≥ 1
0, otherwise

(11)

Labeling the background class as 0 together with the Iverson function
allows the network to ignore the bounding box and grasp losses when
the ROI is predicted to be background. This is essential as there is no
object and hence no grasp able region in the image background. The
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ig. 6. Different stages of the robot manipulation in the testing session. Robot joints are marked with green circles while the currently selected joint is highlighted in red along
ith their axis of rotation. The dotted lines represent the axis of rotation.
yper-parameters 𝜆 and 𝜆′ are the loss weights. They tune the relative
eightages of the different loss terms. We use 𝜆 = 𝜆′ = 1 for our
xperiments. The ground-truth regression targets for both bounding box
nd grasp rectangle are also normalized to have zero mean and unit
ariance.

. Experiments

.1. Experimental protocol

This section describes the experimental protocol employed in this
tudy and highlights the key steps of conducting the experiment.

Subjects: The present study employs ten volunteers showing no
ajor illness in their recent medical history. Out of ten volunteers six
ere male and four were female. All the volunteers belong to the age
roup of 18–35 with mean age of 30 years. The details of experiment
nd its objective were made clear to the all volunteers and a consent
orm, stating their interest to participate in the study, was duly signed
y them. All the ethical and safety issues for employing human subject
n the experiment is maintained according to Helsinki Declaration 1970
ater revised in 2000 [69].

EEG System: EEG signal is acquired from the subjects using a 21
hannel mobile EEG amplifier system. The amplifier has sampling rate
f 200 Hz with built in notch filter at 50 Hz frequency. The present
xperiment follows the international 10–20 electrode positioning sys-
em to place the EEG electrodes in subjects scalp. Electrode position
3, 𝐶4, 𝐶𝑧 placed over the motor cortex region and 𝑃 3, 𝑃4, 𝑃 𝑧 placed
ver the parietal region are used to capture the motor imagery. The
lectrode position M1-M2(mastoid process) are used as contra-lateral
eferencing of all electrodes and Fpz is used as ground position. P300
rain pattern is captured from the electrode position 𝑃𝑧, 𝐶𝑧 and 𝐹𝑧.

A figure depicting the different instruments used in the experiment
s given in Fig. 7.

Communication Protocol: The EEG headset is wirelessly connected
ith a computer through Bluetooth protocol. The computer runs a
ython API to capture the EEG data and processes it in real-time, while
n another computer(placed in front of the subject) runs a python script
o capture and process the Kinect data in real-time. Both the computers
re connected with a server computer using TCP/IP (creating TCP
ockets in both server and client), where computers connected with
8

Fig. 7. Depiction of experimental scenario and different instruments used in the
experiment.

EEG and Kinect act as the clients. The server computer generates the
control commands for the robot based on the information provided by
the computers connected with EEG and Kinect. The control algorithm
in the server is executed in Robotstudio platform (by running a ABB
Rapid language script) which again communicates with the physical
robot controller(IRC 5 controller with Robotware version 6) using UDP
(UDP socket). Once the generated control commands are sent to the
robot controller, the robot joints are actuated and a specific task is
executed.

5.2. Training session

Training data for the classifier are obtained from ten subjects with
the repetition of five sessions for each subject with inter-session gap
of 30 min. Training session data are taken throughout the fifteen days.
Each session contains thirty trials. Each of the trials contain visual cue
of instructions to the subject. Timing diagram of the visual instruction
is illustrated in Fig. 8. At the beginning of the trial a fixation cross
appears in the visual cue for the 2s followed by a blank screen of 2s.
Now a visual cue containing the instruction of motor imagery appears
on the screen. Subject performs the motor imagery either to select the
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Fig. 8. Timing diagram of training session.

ink (feet imagery) or to turn the virtual robot link in the given direction
left and right hand imagery). Hence, the camera mounted on the robot
rm changes its FOV and now focuses on the objects on the table. Next
he center points of the objects start blinking in random manner. A
isual cue then appears on the screen to facilitate the P300 training
ata acquisition. The visual cue contains the instruction to the subjects
o focus their gaze on a particular object. Subject develops the P300
rain response whenever the center point of that object is flashed.

.3. Testing session

The testing session is more complex as no visual cue is shown
nd subject has to plan two steps of operation (MI generation and
eveloping P300) without any assistance. During the testing session
ll the signal modalities are acquired with a moving window of 1s.
n exception is followed in case of MI signal acquisition, where the
ignal is acquired for 1s but last 0.2 s of signal samples are considered
or classification [70]. For better understanding the different stages of
he operation is illustrated through sketches in Fig. 6 while the actual
xperimental scenario is depicted in Fig. 9.

. Detailed experimental procedure of robotic grasp prediction

.1. Datasets

There is no publicly available RGB-D dataset for robotic grasp
etection in multi-object scenes. So, in order to train our model for
verlapping multi-object scenes, we carefully collect a Multi-Object
GB-D dataset and annotate manually. For every object in a single

mage, we annotate several possible grasp rectangles which are a
omprehensive subset of all possible good candidates. We take several
mages of the same set of objects with different orientation and pose.

e also include the affiliation between each grasp with corresponding
bjects using the index of the object bounding boxes. Example images
rom multi-grasp dataset is shown in Fig. 10.

Our Multi-Object Grasping Dataset contains 784 images with 3–5
ifferent objects in each image. The objects are arranged in several
verlapping and non overlapping layouts. The dataset consists of both
GB and depth images. We use the same kinect as the depth sensor.
here are in total of 17 classes and different instances of each class are

ndistinguishable in nature. The object bounding boxes and the grasp
ectangles are manually annotated.

.2. Pre-training and data pre-processing

Similar to [71], we reuse the pre-trained weights of ResNet-101 on
mageNet [72] dataset to avoid over-fitting. The new layer weights are
andomly initialized with a zero-mean Gaussian distribution with stan-
ard deviation 0.02. The NaN values in the depth image are replaced
ith zeros. The depth image is converted to a 3-channel image using
rayscale to RGB conversion method and is rescaled to the 0–255 range.
s both datasets are small, we perform extensive data augmentations
y randomly rotating, translating and changing the background color
or regularization [73–75]. We also add noise, saturation, illumination
nd hue randomly, to make the system robust to real conditions.
9

6.3. Training

We train the entire network end-to-end using Pytorch framework
on an NVIDIA GTX 1080 Ti GPU, with 16 GB dedicated memory, with
CUDA-10 and cuDNN-7.5 installed. We randomly divide the Multi-
Grasping dataset in 4:1 ratio for training and testing. There are 2016
object instances in training set and 758 object instances in the test set.

The training process is divided into two stages. First, we train the
RPN using the input images and ground truth Object proposals as
described in [68]. Next, the complete network is trained end-to-end.
The pre-trained ResNet is fine tuned using stochastic gradient descent
(SGD) optimizer with the hyper parameters set as: initial learning rate
= 0.0001, mini batch size = 16, momentum = 0.9 and maximum
number of epochs = 30. We divide the learning rate by 10 every 10000
iterations.

7. Results

7.1. Performance of EEG classifier

The performance of the proposed EEG classifier networks is evalu-
ated on the basis of four metrics — Classification Accuracy (CA), True
Positive Rate (TPR), False Positive Rate (FPR) and Cohen’s kappa index
(𝜅) which are defined as -

𝐶𝐴 = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

= 𝑝𝑎 (12)

𝑇𝑃𝑅 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

= 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 (13)

𝐹𝑃𝑅 = 𝐹𝑃
𝐹𝑃 + 𝑇𝑁

= 1 − 𝑆𝑝𝑒𝑐𝑖𝑓 𝑖𝑐𝑖𝑡𝑦 (14)

𝜅 =
𝑝𝑎 − 𝑝𝑒
1 − 𝑝𝑒

(15)

where, TP is the true positives, TN is the true negatives, FP is the
false positives, FN is the false negatives, 𝑝𝑒 is the chance of agreement
that is expected and 𝑝𝑎 is actual percentage of agreement. The random
accuracy, 𝑝𝑒, is calculated as

𝑝𝑒 =
(𝑇𝑁 + 𝐹𝑃 )(𝑇𝑁 + 𝐹𝑁) + (𝐹𝑁 + 𝑇𝑃 )(𝐹𝑃 + 𝑇𝑃 )

(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)2
(16)

The Classification Accuracy shows the percentage of trials in the test
data that have been correctly classified. TPR and FPR shows the ability
of the classifier to correctly detect the true positive and true negative
instances out of total positive and negative instances respectively.
Cohen’s kappa index is a inter rater reliability measure of categorical
items and it is used to assess the reliability of the classifier.

It can be seen from Table 1 that the proposed classifier outperforms
both linear and non-linear classification methods for both MI and P300
classification. While a standard CNN works better than linear classifiers,
pre-selection of features followed by a CNN achieves the best results
with CA, TPR, FPR and 𝜅 values of 95.58%, 0.96, 0.05, 0.91 for MI
and 96.30%, 0.91, 0.03 and 0.90 for P300. The better results for
CSP and PCA compared to other techniques are expected as per our
literature-supported intuitions about MI and P300 EEG respectively.

The metric values for 10 subjects have been reported in Table 2, for
both MI and P300 classification, to highlight the inter-personal variance
in the performance of our classifier. As we can see, the average values
of CA, TPR, FPR and 𝜅 are 95.58%, 0.96, 0.05 and 0.91 respectively
for MI classification, while for P300 detection, they are 96.3%, 0.91,
0.03 and 0.90 respectively. It is evident from the standard deviation
values (written below the CA metric), that the inter-trial variation in
the classifier performance is very small for both MI and P300 detection,
indicating the high reliability and robustness of our proposed classifier,
though P300 detection system shows more reliability than MI detection
system.
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able 1
omparative study of different EEG classifiers.

Classifiers with Optional Performance metrics

EEG Pre-processing CA (%) TPR FPR 𝜅

MI classifier LSVM [76] 85.80 0.85 0.07 0.83
KSVM-RBF Kernel [77] 87.55 0.86 0.06 0.86
IT2FS [78] 90.54 0.88 0.06 0.88
GT2FS [79] 90.65 0.89 0.04 0.87
BPNN [80] 89.82 0.86 0.08 0.82
CNN [81] 92.26 0.92 0.04 0.89

STFT [82] + CNN 94.32 0.94 0.05 0.90
DWT [83] + CNN 94.75 0.95 0.04 0.90
CSP [61] + CNN 95.58 0.96 0.05 0.91

P300 classifier SWLDA [84] 90.23 0.84 0.07 0.83
LSVM [76] 90.81 0.86 0.05 0.86
KSVM-RBF Kernel [77] 92.56 0.90 0.05 0.88
BPNN [80] 89.80 0.84 0.04 0.86
CNN [81] 93.95 0.90 0.04 0.90

ICA [85] + CNN 95.12 0.91 0.04 0.90
MRMR [86] + CNN 94.05 0.90 0.03 0.89
PCA [62] + CNN 96.30 0.91 0.03 0.90
10
7.2. Statistical validation of the classifiers

Classifiers are statistically validated using Friedman statistical test.
The Friedman test is a non-parametric test (does not hold the assump-
tion that the data come from a normal distribution) that determines
if there exists any significant difference between the classifier perfor-
mance based on any selected parameter and ranks them according to
it. Here, we have considered two different parameters, Accuracy and
Reliability(kappa score) and performed the Friedman test separately
for each of these parameters. The test considers a null-hypothesis
that assumes the performance of the classifiers under testing is equal
based on the selected parameter, hence the sum of their ranks, which
are assigned based on their performance, are also equal. Under the
null hypothesis Friedman statistic is distributed as 𝜒 with 𝑛 − 1 de-
grees of freedom, where 𝑛 is the number of classifiers under testing.
Mathematically the Friedman statistic is computed as below;

𝜒2
𝐹 = 12

𝐿𝑛(𝑛 + 1)

𝑛
∑

𝑖=1
𝑅2
𝑖 − 3𝐿(𝑛 + 1) (17)

where L is the number of data-set (we considered data-set averaged
over all the sessions for each of the participating subject, hence L=10),
n is the number of classifiers under testing and 𝑅𝑖 is the rank sum of the
classifier which was determined by summing all the ranks it got from all
the data-sets based on the performance on that data-set. The values of
𝜒2 is obtained separately for each category of signal (MI and P300) and
𝐹
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erformance of the proposed EEG classifier algorithms in multiple runs for different subjects.

Metric Sub 1 Sub 2 Sub 3 Sub 4 Sub 5 Sub 6 Sub 7 Sub 8 Sub 9 Sub 10 Avg

MI Classifier CSP + CNN

CA(%) 96.75 96.10 94.05 97.05 92.85 94.48 95.90 95.25 97.59 95.92 95.58
(±1.31) (±1.37) (±2.21) (±1.22) (±0.85) (±1.30) (±2.28) (±0.81) (±0.32) (±0.62)

TPR 0.97 0.96 0.94 0.98 0.92 0.95 0.97 0.98 0.98 0.94 0.96
FPR 0.03 0.04 0.06 0.04 0.06 0.06 0.05 0.07 0.03 0.03 0.05
𝜅 0.93 0.92 0.88 0.94 0.86 0.89 0.92 0.90 0.95 0.92 0.91
Time (s) 0.591 0.594 0.564 0.570 0.544 0.585 0.580 0.576 0.590 0.568 0.576

P300 Classifier PCA + CNN

CA(%) 95.0 97.58 95.8 96.3 98.1 96.9 94.7 97.8 93.9 97.4 96.3
(±0.21) (±0.15) (±0.44) (±0.31) (±0.25) (±0.12) (±0.25) (±0.29) (±0.40) (±0.30)

TPR 0.92 0.96 0.89 0.88 0.94 0.90 0.89 0.95 0.83 0.92 0.91
FPR 0.04 0.02 0.03 0.02 0.01 0.03 0.04 0.02 0.05 0.01 0.03
𝜅 0.82 0.94 0.89 0.94 0.98 0.90 0.83 0.96 0.80 0.96 0.90
Time (s) 0.121 0.186 0.152 0.162 0.140 0.180 0.156 0.126 0.134 0.160 0.151
Table 3
Results of Friedman statistical test.

Category Parameter 𝜒2
𝐹 value obtained

from test
Critical 𝜒2

𝐹
value

Null Hypothesis
Accepted/Rejected

MI Accuracy 71.52 16.91 Rejected
Kappa 61.66 Rejected

P300 Accuracy 65.13 15.50 Rejected
Kappa 33.03 Rejected
ompared with the critical value of the 𝜒2
𝐹 (𝛼 = 0.95). If the obtained

value crosses the critical value, we conclude that a significant difference
exists between the performance of the classifiers and the classifiers can
be ranked as per the cumulative rank sum. The classifier having the
lowest cumulative sum is considered as the best performing classifier.

MI classifier validation: During the MI classification process, perfor-
mance of the proposed classifier is compared with eight other clas-
sifiers, hence we consider n=9 and L=10 in this case. The statistical
test is carried out in two phases, in the first phase we ranked the
performance of the classifiers based on accuracy and in the second
phase we ranked them based on kappa score. Cumulative sum of the
ranks are obtained and put into (17) separately for two cases and in
each case the obtained 𝜒2

𝐹 value exceeds the critical value. Detailed
results are given in Table 3.

P300 classifier validation: Performance of the proposed P300 classifier
is evaluated over 10 data-sets (L=10) and compared with seven other
classifiers (n=8). The statistical test is carried out in the same manner
as described above. The result is given in Table 3. It is evident from the
result that obtained 𝜒2

𝐹 value exceeds the critical value in each cases.
As the obtained 𝜒2

𝐹 value exceeds the corresponding critical value
in every cases, we conclude that null hypothesis is rejected in each
case. Hence, the performance of the classifiers can be evaluated by their
cumulative ranks and the classifier with the lowest rank has the best
performance.

In the MI classification process, our proposed classifier achieved
lowest cumulative ranks of 13 for both the accuracy and kappa score.
In case of P300 classification process, our proposed classifier got the
lowest cumulative ranks of 13 and 12 for accuracy and kappa score
respectively. Hence, in each case the proposed classifier performs best
among others.

7.3. Performance of grasp prediction network

In order to evaluate the performance of our model on the Multi-
Object Grasping Dataset for object overlapping scenes, we need to
take into account both object detection and grasp rectangle regression
performances, since object-grasp affiliation requires accurate classifi-
cation and localization of the objects in the image. For our task, we
use an mAP based metric called mAPg defined in [63–65]. A detected
object-grasp pair is labeled successful if:
11
Table 4
Evaluation on multi-grasp dataset.

Algorithms mAPg (%) Speed (fps)

Faster-RCNN [68] (RGB) + GR-ConvNet [58] (RGB-D) 72.1 46.9
Faster-RCNN [68] (RGB) + (ResNet-50) FCGN [59] (RGB) 64.5 11.9
Faster-RCNN [68] (RGB)+ (ResNet-50) FCGN [59] (RGD) 63.3 11.9
Faster-RCNN [68] (RGB) + (ResNet-101) FCGN [59] (RGB) 69.5 10.2
Faster-RCNN [68] (RGB) + (ResNet-101) FCGN [59] (RGD) 68.2 10.2
OOGNet (RGB-D) 80.4 11.1

1. the object is classified correctly and the predicted object bound-
ing box has an IOU higher than 0.5 with the ground truth
bounding box

2. the detected grasp is labeled as a good grasp according to the
rectangular metric defined in [53], subject to the following
criteria:

• the difference between predicted grasp angle (orientation)
and ground truth grasp angle is less than 30◦

• the Jaccard Index(J) between ground truth grasp rectangle
(g) and predicted grasp rectangle (G), as defined below, is
more than 0.25.

𝐽 (𝐺, 𝑔) =
(𝑔 ∩ 𝐺)
(𝑔 ∪ 𝐺)

(18)

1. Performance on Multi grasp dataset: The previous works [63–
65] on simultaneous object detection and grasp prediction have
not made their code or architectural details public, ruling out
any possibility of re-creation. While they have reported mAP
scores on the VMRD dataset defined in [87], the absence of
depth data prevents us from evaluating our network on VMRD.
So, in order to provide proper context to the performance of our
network in overlapping object scenes, we select a combination
of a state of the art object detector, Faster-RCNN [68] and two
state of the art grasp detection models, GR-Convnet [58] and
FCGN [59] including all the architecture variations of the latter.
Since these combined networks have no implicit grasp-object
affiliation, the grasp rectangle with confidence score higher than
0.25 and center closest to the object bounding box center is
associated with each detected object. Since our dataset contains

RGB-D images, we evaluate the FCGN model, equipped for 3
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ig. 11. Example of detection results on the multi-grasp dataset. The top row shows the predicted bounding boxes and the bottom row shows the predicted grasps on each
orresponding test images.
able 5
esults of Physical Grasping Experiments.
Objects Grasp Prediction

Success rate
Grasp Execution
Success rate

Single Multiple Single Multiple

Banana 10/10 10/10 10/10 10/10
Headphone 10/10 10/10 9/10 9/10
Can 10/10 10/10 10/10 10/10
Stapler 10/10 10/10 10/10 10/10
Spectacle 10/10 10/10 10/10 10/10
Spoon 10/10 9/10 10/10 9/10
Box 10/10 10/10 10/10 10/10
Mask 9/10 9/10 9/10 8/10
Apple 10/10 10/10 10/10 10/10
Mouse 10/10 10/10 10/10 10/10
Torch 9/10 9/10 9/10 10/10
Glue Stick 10/10 10/10 10/10 10/10
Mobile Charger 10/10 9/10 10/10 9/10
Battery Box 10/10 10/10 10/10 10/10

Total 98.6% 97.1% 97.8% 96.4%

channel inputs on both RGB and RGD modalities while the
GR-Convnet is evaluated on RGB-D as intended by its authors.
Table 4 demonstrates that our model outperforms the other mod-
els by a large margin with an mAP score of 80.4%. Although the
GR-ConvNet is shown to be quite effective at handling cluttered
object scenes, our network still beats it in terms of performance.
The improvement can be explained in part by the increased
effectiveness of our model in dealing with the partial occlusion
of objects in case of overlapping layouts, and in part by the
simplistic object-grasp affiliation scheme used in the absence of
an implicit association in case of the combination models. While
FCGN has a higher mAP for RGB input compared to RGD, the
mAP of the FCGN model (69.5%) has also increased from that
reported by [63] on VMRD (54.5%). The reason for this increase
may be attributed to the fact that the overlapping object layouts
in our Multi grasp dataset are relatively less complex than that
in VMRD due to our precondition for object visibility as stated
in Section 2. An execution speed of 11.1 fps for our model is
more than sufficient for user convenience. The improvement
in speed over the FCGN model, in spite of having a deeper
feature extractor, can be explained by our choice to generate
12
Table 6
Performance comparison the proposed system with existing hybrid closed loop BCI
schemes.

Performance metric MI+ErrP [34] SSVEP+MI+P300 [33] Proposed Method

Success rate (%) 85.6 90.2 93.4
Steady state error (%) 2.1 0.2 0.05
Settling Time (s) 31 24 15.92
Peak Overshoot (%) 4.9 4.2 0

only object proposals instead of predicting multiple object and
grasp candidates. Performance of the grasp prediction of the
OOGNet is represented with few example images in Fig. 11.

2. Physical Evaluation: In order to ascertain how well the grasp
predictions translate to successful physical grasps in real-world,
we perform extensive experiments. In experimental set-up, the
robot arm is positioned a fixed distance above a plane surface
containing either a single object or multiple objects in a variety
of overlapping layouts, with the kinect mounted on its 5th
axis and tilted downwards. Our network takes an RGB-D image
of the top view of the objects as input from the kinect and
generates a class prediction, bounding box and grasp rectangle
for each object in the image. For multi-object layout, a particular
object is selected to be grasped. The predicted grasp rectangle
is converted to a gripper pose; the arm approaches and grasps
the target object as described in [53,54]. The experiment is
performed on 10 different objects, with 25 trials for grasping
each object in both single and multi-object overlapping layouts.

Table 5 shows the success rates for both the grasp prediction and
execution for each object in single and Multi-object scenes in a bench-
mark scale of 10 as used in [52][55]. For single object cases, our model
reached a 98.6% prediction success rate and a 97.8% success rate for
physical grasping over all objects. On the other hand for Multi-object
scenes, our network achieved a staggering 96.4% success rate for phys-
ical grasping and a 97.1% success rate for prediction. The results are
calculated over 10 trials chosen randomly from the original 25 trials,
to remove any biases present in the manual arrangement or positioning
of the objects in single and multi-object settings. This highlights the
effectiveness and reliability of our proposed network in performing
real-world grasping tasks for a variety of object arrangements.
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able 7
nline performance results.
Sub Method 1 Method 2 Proposed

[34] [33] Method

AccBCI AccSys AccBCI AccSys AccBCI AccSys

S1 79.16 68.75 89.58 83.33 85.41 85.41
S2 85.41 79.16 81.25 81.25 91.66 87.5
S3 83.33 72.91 85.41 83.33 87.50 85.41
S4 85.41 79.16 87.50 79.16 91.66 89.58
S5 85.41 72.91 83.33 81.25 93.75 91.66
S6 87.50 79.16 75.00 72.91 95.83 91.66
S7 79.16 68.75 62.50 58.33 85.41 83.33
S8 83.33 72.91 81.25 75.00 89.58 87.50
S9 75.00 66.66 72.91 70.83 83.33 79.16
S10 81.25 70.83 85.41 79.16 93.75 89.58

Avg 82.50 73.12 80.41 76.45 89.79 87.08

.4. System performance

The overall position control performance of the BCI system is as-
essed here using few popular metrics arrived from control system lit-
rature. The metrics viz. success rate, settling time, peak overshoot and
teady state error are considered to evaluate the system performance.
ormal definition of the metrics are given below.
Success rate: It expresses the number of successful attempts out of

the total attempts made by the robot to reach the desired object. An
attempt is regarded as successful only when the robot is able to grasp
the desired object properly.

Steady state error : It indicates the maximum positional deviation of
the robot end effector from the desired position in the infinite time
range.

Settling Time: Time taken by the system to reach and stay within 2%
of steady state position.

Peak Overshoot : The maximum deviation of the response from its
desired position. It is expressed as percentage change from its final
response.

Performance of the overall system is given in Table 6 and the
online performance is provided in Table 7. In both the cases, result
is also compared with the performance of the two recent state of
the art work [33,34] which fall under the category of hybrid closed
loop BCI and employs manual trajectory planning. Table 6 reports the
overall success rate of the system by counting the number of time
the subject is able to reach the desired position, however the subjects
are allowed to retake their decision if their intent is miss-classified
at any stage. Table 6 focuses more on how the proposed control and
planning method effects the overall system performance. On the other
hand, Table 7 is obtained by following an online protocol which rejects
the entire trial if miss-classification occurs at any stage of a trial and
considers a trial to be successful only if all the stages of it are successful.
Accuracy of the BCI and overall system are reported separately to
provide insight to the readers how the BCI performance effects the
overall system accuracy.

Time taken by the each module of the present work and their
individual success rates are reported in Table 8. The last row denoting
total system performance, provides the average performance of the
entire system when all the modules work together, which is not equal
to the numerical average of the each module. The above table also
indicates the human involvement in each of the module. Hence the time
taken by the first two modules is greatly effected by human behavior
where as the time taken by the last two modules is affected by velocity
of the robot arm and shape of the object selected by the subject. Sub-
components of system that govern the real time behavior of the system
are described below along with the execution time. Object localization
module includes detection of Motor signals that requires approximately
0.38 s including signal acquisition for 0.3s and classification time of
13

0.08 s. Robot actuation time is 0.01 s. Rest of the time is accounted for E
the control of the robot arm by the human subject to select the desired
FOV. Next, the object selection step aims to choose the target object
when multiple objects are present in the FOV. This includes object
detection using Mask RCNN (0.1 s), Centroid calculation (< 0.01 s)
nd P300 detection (0.58 s= signal acquisition for 0.5s+classification
ime 0.08 s). Rest of the time is taken by the human subject to decide
hich object he/she wants to choose. The Positioning step aims to
stimate the 3D coordinates of the target object using a 2-D spatial
ocation and a 2-D depth map. Co-ordinate estimation takes an average
f 0.05s. Reaching the estimated position by the robot arm depends
n end effector velocity and distance between present and estimated
osition. Lastly, the final gripper configuration is estimated using our
roposed OOGNet architecture. This module takes approximately 0.1 s
11 fps) and gripper actuation time is 0.01 s The total gripping time
epends on the size and shape of the object selected by human.

It is apparent from the Table 6 that success rate of the proposed
ethod is increased in significant margin of 3.2% and from the tra-
itional BCI based success rate reported previously [33]. The overall
uccess rate is found to be 93.4%. The steady state error is also
rastically reduced to 0.05% along with the settling time which is
urther reduced to 15.92s. The proposed method shows no overshoot
r undershoot in either of the experiment due to the over-damped
esponse of the robot end effector. Absence of human involvement in
he gripper positioning phase and invoking autonomous positioning
odule have eliminated the oscillation of robot end effector around

he targeted object, which is otherwise reported in existing literature.
similar trend is seen in online protocol results reported in Table 7

here the best overall system accuracy and BCI accuracy are found
o be 87.08% and 89.79% respectively for the proposed method. Such
ncrease in BCI and overall accuracy may be attributed to the fact
hat the proposed method uses minimal human intervention hence
inimizes the error that may arise from BCI decoding performance. The

udicious selection of autonomous positioning and grasping strategy
lso contributed to make the system more robust and highly accurate
ompared to other methods reported in the table.

As per Table 8, average success rate of the individual modules
re found to be 94.1%, 95.0%, 99.8% and 96.2% for Object local-
zation, Object selection, Automatic positioning and Grasping phase
espectively. It is also noticed that when subject performs each module
onsecutively in a single run, the overall success rate of the system
lightly reduces to 93.4% which is less than the numerical average of
ndividual success rates.

Removing human interaction from the end-effector positioning and
rasping phase has a significant effect on reducing workload of the
ubject during real time operation. The complex planning procedure
f aligning robot end effector with desired object imposes a heavy
orkload on the subject. It also requires a significant amount of subject

raining and most of the novice subjects are not able to do it with re-
uired accuracy. Experiments [33,34] involving such complex planning
rocedure are replicated in the laboratory environment and workload
f the subject while operating under those schemes is compared with
he present proposed method. The main motivation behind providing
his comparison study is to indicate the quantitative difference in work-
oad associated with pure cognitive control based state-of-the art BCI
pproaches(subject has to plan the entire robot trajectory for reaching
nd grasping) and our proposed scheme (shared control based approach
here reaching and grasping phase were made autonomous,minimizing
verall human intervention).

verall Workload assessment: Workload of the participating subjects
ere analyzed using NASA-TLX questionnaire survey developed by
ASA Ames Research Center that allows to asses the workload of the

ubjects operating various human–machine systems [49]. It assess the
orkload using a multidimensional rating system with six sub-scales:
ental Demands, Physical Demands,Temporal Demands, Performance,

ffort, and Frustration [50,51]. Each sub-scale is divided into 20 equal
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Table 8
Comparison between different modules of the proposed system.
Proposed module Average execution

time (s)
Average success
rate (%)

Human
involvement

Object Localization 7.18 94.1 Yes
Object Selection 2.85 95.0 Yes
Automatic Positioning 3.22 99.8 No
Grasping 2.64 96.2 No

Overall System Performance 15.92 93.4 –
ig. 12. Box plot of sub-scales of the NASA-TLX study reported by ten participating subjects. The upper row represents the raw TLX scores whereas the lower row represents the
adjusted TLX scores.
intervals which represents the score 0–100. Subjects provide rating over
each sub-scale for the task they were assigned. Here three BCI systems
were compared, hence the subject provided the rating for three tasks.
Once the subject finishes the rating, 15 pairwise comparison between
the sub-scales is presented to them, where subjects need to choose the
sub-scale contributed most to their workload. Weight of a sub-scale
is determined by number of time it is chosen by the subject during
pair wise comparison task. The overall score of the test is found by
computing the weighted average of the sub-scales with the weights
determined above.

Here 10 participating subjects provided the rating for six sub-scales
for each of three BCI tasks. Hence a total of 180 responses (10 × 6 × 3)

ere recorded. Average ratings of each BCI tasks for the six sub-scales
re found by averaging the response over ten subjects. The result is
hown in Fig. 12. Adjusted rating of each sub-scale is also reported
n the above figure. RAW TLX scores reported in the first row of
he figure reveals that Task 1 [34] imposed highest mental load and
hysical load on the subject, whereas Task 2 [33] imposes highest
emporal load. Task 3 (proposed strategy) has been the lowest in all
f the above categories and also demands least effort from the subject
o operate it. Task 3 is also found to have the highest performance
ating and lowest frustration rating. Adjusted TLX scores show similar
attern except for physical demand where it is found to be negligible
n all three tasks. The overall adjusted TLX scores of Task1 and Task 2
re found to be 62.49 ± 4.59(𝑚𝑒𝑎𝑛 ± 𝑠𝑡𝑑) and 51.43 ± 5.58 respectively
hereas the overall score of the Task3 is found to be 23.99 ± 6.80

mposing least cognitive load on the participating subjects compared
o the other manual trajectory planning based state-of-the-art BCI robot
14

anipulation techniques.
8. Conclusion

Main motivation of the present work was to relieve the subjects
from manual complex trajectory planning of the robot arm in a BCI
based robot control scheme. The complex trajectory planning is mainly
involved in object reaching and grasping task, which are made au-
tonomous in the present scheme. The idea facilitates the precise grasp-
ing of any mentally selected object without any human intervention
hence reducing the cognitive load of the subject drastically. The paper
also proposed a CNN based novel robotic grasp detection network
to predict the accurate grasp in real time. The proposed network is
able to work on overlapping scenes and uses simultaneous object and
grasp detection. The overall performance of the BCI system is greatly
improved from the recent state-of the art where trajectory planning is
entirely done by human subject. As an example steady state error of
the system is reduced to 0.05% and settling time is reduced to 15.92 s.
The results are substantiated by providing a comparison of cognitive
load of participating subject for the proposed scheme and other recent
BCI schemes. It was evident from the comparison that present scheme
imposes least cognitive load on the subject and hence more suitable
than the scheme involving manual trajectory planning. However there
exists an ample scope to further reduce the cognitive load of the subject
by suitably predicting the human behavior of selecting any object at
any stage of operation, and assisting the human with autonomous
navigational commands to reach the desired object. Such learning
mechanism will reduce the need of multiple P300 generation that is
used here for selecting the desired object. Such scheme uses fewer
number of mental commands hence decreases the cognitive load and
simultaneously increases the real-time accuracy of the system.
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